Emerging approaches to broaden resistance of soybean to soybean cyst nematode as supported by gene expression studies.
نویسندگان
چکیده
The major pest of soybean (Glycine max) is the soybean cyst nematode (SCN), Heterodera glycines. One population of SCN can evoke a resistant response while a second population can evoke a susceptible response from the same soybean cultivar. Recently, interactions between SCN and soybean roots have been studied using commercially available microarrays to measure both soybean and nematode transcripts. Furthermore, precise dissection of nematode feeding sites (syncytia) using laser capture microdissection (LCM) now allows the study of gene expression specifically in syncytia during a resistant and susceptible reaction. Genes and pathways that are upand down-regulated in roots and syncytia during the interaction of soybean with SCN have been identified. In this Update, we discuss recent research on gene expression during interactions of soybean with SCN and how this information is being used to identify soybean and SCN genes involved in resistance and susceptibility.
منابع مشابه
Host-Derived Artificial MicroRNA as an Alternative Method to Improve Soybean Resistance to Soybean Cyst Nematode
The soybean cyst nematode (SCN), Heterodera glycines, is one of the most important pests limiting soybean production worldwide. Novel approaches to managing this pest have focused on gene silencing of target nematode sequences using RNA interference (RNAi). With the discovery of endogenous microRNAs as a mode of gene regulation in plants, artificial microRNA (amiRNA) methods have become an alte...
متن کاملImmediate responses of cyst nematode, soil-borne pathogens and soybean yield to one-season crop disturbance after continuous soybean in northeast China
Habitat disturbance affects numerous ecosystem components and processes, but its effect on continuous soybean system is less available. Soybean was seeded following six preceding crops, including grain soybean (Glycine max L. Merill.), wheat (Triticum aestivum L.), sugar beet (Beta vulgaris L.), tobacco (Nicotiana tabacum L.), corn (Zea mays L.) and hemp (Cannabis Satia L.), on a Mollisol ...
متن کاملResistance to Root-knot, Reniform, and Soybean Cyst Nematodes in Selected Soybean Breeding Lines.
Soybean breeding lines and reported sources of nematode resistance were evaluated in repeated greenhouse tests for resistance to North Carolina populations of the soybean cyst nematode Heterodera glycines, reniform nematode Rotylenchulus reniformis, and the root-knot nematode species Meloidogyne incognita, M. arenaria, and M. arenaria. Lines from the soybean breeding program in Missouri that ha...
متن کاملModulations in gene expression and mapping of genes associated with cyst nematode infection of soybean.
Infection of the soybean root by the soybean cyst nematode (SCN) (Heterodera glycines Ichinohe) induces a well-documented, yet poorly understood, response by the host plant. The plant response, involving the differentiation of a feeding structure, or "syncytium," facilitates the feeding and reproduction of the nematode to the detriment of the host. We used a genetic system involving a single do...
متن کاملThe soybean GmSNAP18 gene underlies two types of resistance to soybean cyst nematode
Two types of resistant soybean (Glycine max (L.) Merr.) sources are widely used against soybean cyst nematode (SCN, Heterodera glycines Ichinohe). These include Peking-type soybean, whose resistance requires both the rhg1-a and Rhg4 alleles, and PI 88788-type soybean, whose resistance requires only the rhg1-b allele. Multiple copy number of PI 88788-type GmSNAP18, GmAAT, and GmWI12 in one genom...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Plant physiology
دوره 151 3 شماره
صفحات -
تاریخ انتشار 2009